skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Aguiar, Izabel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Multilayer networks describe the rich ways in which nodes are related by accounting for different relationships in separate layers. These multiple relationships are naturally represented by an adjacency tensor. In this work we study the use of the nonnegative Tucker decomposition (NNTuck) of such tensors under a KL loss as an expressive factor model that naturally generalizes existing stochastic block models of multilayer networks. Quantifying interdependencies between layers can identify redundancies in the structure of a network, indicate relationships between disparate layers, and potentially inform survey instruments for collecting social network data. We propose definitions of layer independence, dependence, and redundancy based on likelihood ratio tests between nested nonnegative Tucker decompositions. Using both synthetic and real-world data, we evaluate the use and interpretation of the NNTuck as a model of multilayer networks. Algorithmically, we show that using expectation maximization (EM) to maximize the log-likelihood under the NNTuck is step-by-step equivalent to tensorial multiplicative updates for the NNTuck under a KL loss, extending a previously known equivalence from nonnegative matrices to nonnegative tensors. 
    more » « less
  2. Abstract When people are asked to recall their social networks, theoretical and empirical work tells us that they rely on shortcuts, or heuristics. Cognitive social structures (CSSs) are multilayer social networks where each layer corresponds to an individual’s perception of the network. With multiple perceptions of the same network, CSSs contain rich information about how these heuristics manifest, motivating the question,Can we identify people who share the same heuristics?In this work, we propose a method for identifyingcognitive structureacross multiple network perceptions, analogous to how community detection aims to identifysocial structurein a network. To simultaneously model the joint latent social and cognitive structure, we study CSSs as three-dimensional tensors, employing low-rank nonnegative Tucker decompositions (NNTuck) to approximate the CSS—a procedure closely related to estimating a multilayer stochastic block model (SBM) from such data. We propose the resulting latent cognitive space as an operationalization of the sociological theory ofsocial cognitionby identifying individuals who sharerelational schema. In addition to modeling cognitivelyindependent,dependent, andredundantnetworks, we propose a specific model instance and related statistical test for testing when there issocial-cognitive agreementin a network: when the social and cognitive structures are equivalent. We use our approach to analyze four different CSSs and give insights into the latent cognitive structures of those networks. 
    more » « less